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Complex-temperature phase diagrams of one-dimensional spin models
with next-nearest-neighbor couplings

Robert Shrock* and Shan-Ho Tsai†

Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3840
~Received 5 December 1996!

We study the dependence of complex-temperature phase diagrams on details of the Hamiltonian, focusing on
the effect of non-nearest-neighbor spin-spin couplings. For this purpose, we consider a simple exactly solvable
model, the one-dimensional~1D! Ising model with nearest-neighbor~NN! and next-nearest-neighbor~NNN!
couplings. We work out the exact phase diagrams for various values ofJNNN /JNN and compare these with the
case of pure NN couplings. We also give some similar results for the 1D Potts model with NN and NNN
couplings.@S1063-651X~97!06305-8#

PACS number~s!: 05.50.1q, 05.70.Fh, 64.60.Cn
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I. INTRODUCTION

Yang and Lee pioneered a very interesting line of
search in which one studies statistical-mechanical mo
with the external magnetic fieldH generalized from real to
complex values@1#. Since the free energy of a spin syste
f5 f (K,H) is a function of both the fieldH and the tempera
tureT @or, equivalently,K5bJ, whereb5(kBT)

21 andJ is
the spin-spin coupling#, a related complexification is to gen
eralizeK from real to complex values. Both of these com
plexifications give one deeper insight into the properties
such models. Recently, there has been renewed intere
this subject for Ising models@2–10# and Potts models@11–
13# ~earlier references can be found in these papers!. As the
comparison of complex-temperature phase diagrams for
two-dimensional ~2D! ~isotropic, nearest-neighbor! Ising
model with spins>1 versuss5 1

2 in Refs. @4, 8–10# has
shown, these phase diagrams differ considerably for diffe
s even though all values ofs are in the same universalit
class for the usual paramagnetic~PM! to ferromagnetic~FM!
phase transition in this model.

Another parameter of the Hamiltonian on which comple
temperature phase diagrams depend is the ratio of spin-
couplings. Indeed, in cases such as the~spin-12, nearest-
neighbor! Ising model on regular bipartite 2D lattices, whe
a variation in the ratio of spin-spin couplings along differe
lattice directions does not change the universality class of
PM to FM phase transition, this variation has a significa
effect on the continuous locus of points where the free
ergy is nonanalytic, which is denotedB: while B is a one-
dimensional algebraic variety for the case of isotropic c
plings, it becomes a two-dimensional variety for t
nonisotropic case@14#. Recently, we have also shown, usin
exact results, that at complex-temperature singularities,
exponents describing the behavior of various thermodyna
functions depend, in general, on lattice type, which con
tutes a violation of universality@5#. Moreover, we have
found a number of violations of exponent relations at su
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singularities, such asgÞg8 ~for the susceptibility exponent!
and a12b1gÞ2 ~as one approaches such a singular
from the PM phase! @5#.

In the present paper, we explore further the extent of n
universal features of complex-temperature phase diagram
spin models, focusing on the effect of non-nearest-neigh
spin-spin couplings. Here, by ‘‘nonuniversal’’ we mean fe
tures of the complex-temperature phase diagram that dep
on a parameter in the Hamiltonian, where a variation of t
parameter does not change the universality class of a p
transition at a given critical point. For our study, it will su
fice to use a simple exactly solvable model, namely, the
Ising model with nearest-neighbor~NN! and next-nearest
neighbor ~NNN! spin-spin couplingsJNN and JNNN . This
model~except for the special caseJNNN52uJNNu/2) is criti-
cal atT50, so we specifically study the dependence of
complex-temperature phase diagram on the ratio

r5
JNNN
JNN

~1!

for the range ofr values where changes inr do not change
the ground state of the model or the universality class of
critical point at T50. After some early papers@15,16#, a
detailed solution and discussion of this model was given
Stephenson in Ref.@17# and subsequent papers@18#. Some
later papers include Refs.@19,20#. All of these dealt with
physical temperature; the model has not, to our knowled
been studied for complex temperature. As our analysis of
complex-temperature~CT! phase diagram of this model wil
demonstrate, it illustrates very well how sensitive the C
phase diagram is to the presence of such NNN couplin
This example is also useful in giving one a qualitative ide
in a simple context, of what to expect concerning the eff
of non-nearest-neighbor couplings in higher-dimensio
spin models for which one does not have any exact solut
For these higher-dimensional models the addition of NN
couplings gives rise to quite complicated phase diagra
even for physical temperature@21#. Moreover, althoughd
51 is the lower critical dimensionality for the Ising mod
and some features, such as the lack of a physical phase
sition at finite temperature, are qualitatively different fro
the behavior ind.dl51, past experience with 21e and 1
5184 © 1997 The American Physical Society
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55 5185COMPLEX-TEMPERATURE PHASE DIAGRAMS OF ONE- . . .
1e expansions@22# has shown that one can learn about s
models in intermediate dimensionalities by moving upwa
from dl as well as downward from the upper critical dime
sionality du . Indeed, several intriguing connections we
previously noted between the CT phase diagrams of the
spin-s Ising model and features of the same model on
square lattice@8,9#. In passing, it may be noted that the 1
NNN Ising model has also been used in a complemen
manner in Ref.@23#, for a study of Yang-Lee~complex-field!
zeros of the partition function for physical temperature.

II. ISING MODEL AND NOTATION

In this section, we shall briefly give the relevant notati
and review some basic properties of the model for phys
temperature, which will serve as a background for our res
on the complex-temperature properties. The 1D~spin-12!
Ising model with NN and NNN couplings is defined, fo
temperatureT and external magnetic fieldH on a 1D lattice,
by the partition functionZ5($sn%

e2bH, with the Hamil-
tonian

H52JNN (
n

snsn112JNNN (
n

snsn122H (
n

sn ,

~2!

where sn561 and b5(kBT)
21. Except where indicated

otherwise, we takeH50 below. It is convenient to define

K5bJNN , ~3!

K85bJNNN , ~4!

andh5bH. Recall that on a bipartite latticeL, without loss
of generality, one may takeJNN>0. ~If JNN,0 initially,
we can redefinesn→2sn for nPLe , sn→sn for n
PLo , andJNN→2JNN , whereLe andLo denote the even
and odd sublattices ofL; the partition functionZ is invariant
under this mapping.! Using this fact, we shall thus tak
JNN.0 henceforth. We define the ratio of couplings by E
~1!. We shall mainly consider the effect of NNN coupling
with r>0 since, given that we takeJNN.0 these NNN cou-
plings do not introduce any frustration or competition and
not change the universality class or ground state of
model. In contrast, given that we takeJNN.0, a NNN cou-
pling with negativeJNNN does introduce such competitio
and frustration and is not necessarily an irrelevant pertu
tion to the Hamiltonian. We shall also include some resu
for negativeJNNN . It is convenient to define the Boltzman
weight variablesz5e22K8,

u5z25e24K8, ~5!

andzK5e22K, with

uK5zK
25e24K. ~6!

For our study, it will be sufficient to consider the cas
where~i! r51/p, wherep is an integer, or~ii ! r is an integer,
since these already amply demonstrate the sensitivity of
complex-temperature phase diagram to the value ofr . In
these cases,Z is a generalized polynomial~i.e., with positive
d
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and negative integer powers! in the respective Boltzmann
weights~i! u and~ii ! uK . Of course, one could also consid
the caser5p/q, wherepÞ1 andqÞ1 are relatively prime
integers, but we shall not do this here. The~reduced, per site!
free energy is defined asf52bF5 limN→`N

21lnZ in the
thermodynamic limit. We assume periodic boundary con
tions and take the number of lattice sitesN to be even in
order to preserve the bipartite lattice structure on a fin
lattice.

III. GENERALITIES AND COMPLEX-TEMPERATURE
PHASES

For d51 dimension, it is straightforward to solve th
model exactly, e.g., by transfer matrix methods. One has

Z5Tr~T N!5(
j

l j
N , ~7!

where thel j , j51, . . . ,4, denote the eigenvalues of th
transfer matrixT defined byTnn85^ l nuexp@2bE(ln ,ln8)#uln8&.
It is natural to analyze the phase diagram in complex pl
of the appropriate Boltzmann weight variables~such asu or
uK for positive r !. For physical temperature, phase tran
tions are associated with degeneracy of leading eigenval
There is an obvious generalization of this to the case of co
plex temperature: in a given region ofu or other Boltzmann
weight variable, the eigenvalue ofT that has maximal mag
nitudelmax gives the dominant contribution toZ and hence,
in the thermodynamic limit,f receives a contribution only
from lmax: f5 ln(lmax). For complexK, f is, in general,
also complex. The CT phase boundaries are determined
the degeneracy, in magnitude, of leading eigenvalues oT.
As one moves from a region with one dominant eigenva
lmax to a region in which a different eigenvaluelmax8 domi-
nates, there is a nonanalyticity inf as it switches fromf
5 ln(lmax) to ln(lmax8 ). The boundaries of these regions a
defined by the degeneracy condition among dominant eig
valuesulmaxu5ulmax8 u. These form curves in the plane of th
given Boltzmann weight variable.

Of course, for physical temperature, a 1D spin model w
finite-range interactions has no nonanalyticities for any~fi-
nite! value ofK, so that, in particular, the 1D NNN Ising
model is analytic along the positive real axis in the comp
u or uK plane and is only singular atT50. In this context,
we recall that the elements of the transfer matrix are n
negative~positive or zero! real functions ofT for physical
temperature and the Perron-Frobenius theorem@24# guaran-
tees that a~finite-dimensional, but not necessarily symme
ric! square matrix with non-negative real entries has a r
positive eigenvalue of greatest magnitude. This property
derlies the absence of any nonanalyticity and associa
phase transition in a 1D spin model with finite-range int
actions. However, when one generalizes the temperatur
complex values, the elements of the transfer matrix are
in general, non-negative~they are complex!, so that the
premise of the Perron-Frobenius theorem is no longer sa
fied and, indeed, the maximal eigenvalue can switch as
variesK over complex values.

Since thel j are analytic functions ofu, whencel j (u* )
5l j (u)* , it follows that the solutions to the degenera
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5186 55ROBERT SHROCK AND SHAN-HO TSAI
equations defining the boundaries between different ph
ul i u5ul j u are invariant underu→u* . Hence the complex-
temperature phase boundaryB or, equivalently, the continu
ous locus of points where the free energyf is nonanalytic is
invariant underu→u* . The same applies forB in the uK
plane, as discussed below. Although the model has a ph
cal phase structure consisting only of theZ2-symmetric, dis-
ordered phase, its complex-temperature phase diagra
nontrivial and exhibits a number of interesting features.

Since the model has NNN couplings, one cannot de
the transfer matrix as acting just between states consis
only of neighboring spins. The most compact way to defi
the transfer matrix is to use state vectors consisting of p
of spins: vn5usn ,sn11&. Then

^vnuT uvn11&5^vnue2bHuvn11&

5expSK2 ~snsn111sn11sn12!

1K8snsn121hsn11D . ~8!

The factor 12 is included because each interaction of sp
within a given vectoruvn& is counted twice in the sum ove
n. Hence, with the basis vectors ordered as$uvn&5u11&,
u12&,u21&,u22&%, one has@15,16#

T5S eK1K81h

0

e2K81h

0

e2K81h

0

e2K1K81h

0

0

e2K1K82h

0

e2K82h

0

e2K82h

0

eK1K82h

D .

~9!

Note thatT has zero matrix elements if the second spin
uvn& has a value different from the first spin inuvn11&, since
these states overlap in this middle spin. AlthoughT is not
symmetric, the usual relationZ5Tr(T N)5( jl j

N , where the
l j ’s are the eigenvalues ofT, still holds; this follows from~i!
the theorem@24# that an arbitrary complexl3 l matrix can be
put into upper triangular~u.t.! form by a unitary transforma
tion V: VT V215Tu.t., such that diag(Tu.t.)5$l1 ,...,l l%;
and ~ii ! the identity Tr(T u.t.

N )5Tr(T N)5( j51
l l j

N . It is con-

venient to defineT̄5e2(K1K81h)T so thatT̄1151 and con-
sider the eigenvalues ofT̄. We shall takeh50 henceforth.
T̄ has the eigenvalues

l165e2K@coshK6Asinh2 K1e24K8#, ~10!

l265e2K@sinhK6Acosh2 K2e24K8#. ~11!

For physical temperature,l11 is the dominant eigenvalue, s
the ~reduced, per site! free energy isf5 ln(l11). In passing,
we note that an equivalent method for solving the mode
zero field is to reexpress it formally in terms of a differe
theory with only NN couplings but a nonzero effective fie
@17#.

The internal or configurational energy~per site! U is
es

si-

is

e
ng
e
rs

s

n

U52
JNN sinh~K !

Asinh2~K !1e24K8
2JNNN

3F12
2e24K8

sinh2~K !1e24K81cosh~K !Asinh2~K !1e24K8G .
(12)

Observe that

U~JNN ,JNNN ,b!5U~2JNN ,JNNN ,b!, ~13!

which is an explicit illustration of the general fact note
above that we can, without loss of generality, takeJNN.0.
The nature of the ground state~g.s.! depends onr @16#: if
JNNN is positive or sufficiently weakly negative, the groun
state is ferromagnetic:

r.2 1
2⇒FM g.s., ~14!

while for stronger negativeJNNN it changes according to

r,2 1
2⇒~2,2! g.s., ~15!

where the~2,2! g.s. refers to a spin configuration of th
modulated form ~11221122•••!. Correspondingly,
there is a nonanalytic change in the ground-state energy

U~T50!52~JNN1JNNN! for r>2 1
2 , ~16!

whereas

U~T50!5JNNN for r<2 1
2 . ~17!

Evidently, given that we takeJNN.0, negative values of
JNNN give rise to competing interactions and frustration. I
deed, ifJNNN is sufficiently negative thatr,2 1

2, it changes
the ground state of the model. In our study of the depende
of the complex-temperature phase diagram on the additio
irrelevant operators~i.e., irrelevant in the sense that they d
not change theT50 critical behavior!, we therefore shall
restrict ourselves to the caser.2 1

2. However, since the
range r<2 1

2 is of interest in its own right, we shall als
briefly digress to discuss this case further below.
Stephenson showed@17,18#, even in the range2 1

2,r,0,
where the ground state still exhibits saturated FM long-ra
order, the NNN coupling has the interesting effect of givi
rise to a ‘‘disorder temperature’’TD , where the correlation
length has a local minimum; forT,TD , the spin-spin cor-
relation functions have a purely exponential asymptotic
cay, while forT.TD , their asymptotic decay is an expone
tial multiplied by an oscillatory factor.

TheT50 criticality of the model is typical of a theory a
its lower critical dimensionality, hered51. As T→0, the
specific heatC has an essential zero given by

C;4kB~112r !2K2e22~112r !K as T→0 for r.2 1
2

~18!

and
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C;
kB
2

~112r !2K2e~112r !K

;
kB
2

~122ur u!2K2e2~2ur u21!K as T→0 for r,2 1
2 ,

~19!

while for the borderline valuer52 1
2 one finds the propor-

tionality

C;kBAK
2e22K for r52 1

2 . ~20!

For r>0 and for physical temperature, the spin-spin cor
lation function decays asymptotically like

^s0sn&;S l21

l11
D unu

. ~21!

This is also true for2 1
2,r,0 if T,TD @17,18#. Hence,

taking theT→0 limit, one finds that the correlation lengthj,
defined as usual byj2152 limn→`n

21 lnu^s0sn&u, diverges
like

j; 1
2e

2~112r !K as T→0. ~22!

One also finds that forr.2 1
2, the ~zero-field! susceptibility

x diverges like

x; 1
2b21e2~112r !K as T→0. ~23!

Consequently, forr.2 1
2,

C;K2j21, x;K21j as T→0, ~24!

independent ofr in this range. Thus, forr.2 1
2, the singu-

larities inC andx, expressed as functions of the correlati
lengthj, are independent ofr in this range, which shows tha
for r.2 1

2, the NNN coupling is an irrelevant perturbatio
and the model satisfies weak universality in the sense
Suzuki @25#, at theT50 critical point.

In order to investigate which eigenvalues are dominan
various complex-temperature phases, it is useful to exp
these as functions of the Boltzmann weight variables. For
caser51/p with integral p, sinceZ is a generalized poly-
nomial in u, the CT phase diagram is well defined in th
complexu plane. This follows since the CT zeros ofZ may
be unambiguously calculated in theu plane and, in the ther
modynamic limit, these merge to form the phase boundaryB.
In terms of the variableu,

l165 1
2 @11up/26A~12up/2!214u11p/2#, ~25!

l265 1
2 @12up/26A~11up/2!224u11p/2#. ~26!

Note that

l16→l26 for Au→2Au. ~27!

If p is an odd integer, then Eq.~27! implies that

l16~u!5l26~u* !5l26~u!* for negative realu,
~28!
-

of

n
ss
e

respectively, for the6 cases.~Here we use the standar
branch cut forAu, along the negative realu axis.!

As background, we recall that for the case of neare
neighbor couplings,B consists of the negative real axis in th
u plane~e.g., Ref.@9#!. This is evident from the fact that fo
r50, the two nontrivial eigenvalues ofT̄ are l11511Au
andl21512Au, which are equal in magnitude for negativ
real u. ~The other two eigenvaluesl12 andl22 both van-
ish.!

IV. CASE OF r51/p FOR POSITIVE INTEGER p

We first consider the situation where the NNN coupling
of the same sign as, but weaker than, the NN coupling,
0,r,1. For our purposes, it will suffice to deal with th
case wherer51/p with p a positive integer. There are tw
subcases:p even andp odd. For evenp52l , the eigenvalues
of the transfer matrix have the following Taylor-series e
pansions aboutu50:

l11511u11p/21••• , ~29!

l21512u11p/21••• , ~30!

l125up/21••• , ~31!

l2252up/21••• , ~32!

where the ellipses denote higher-order terms inu. It follows
that for evenp, l11 is the dominant eigenvalue on the pos
tive realu axis and hence also in the complex-temperat
phase that includes this axis. Furthermore, on the nega
realu axis in the vicinity of the origin,~i! if p50 mod 4, i.e.,
l is even, thenl21 is the dominant eigenvalue, whereas~ii !
if p52 mod 4, i.e.,l is odd, thenl11 is the dominant eigen-
value; in both cases, the respective eigenvalues are there
also dominant in the CT phases that include this portion
the negative realu axis near the origin. For odd positiv
integral p, the l’s have analogous series expansions in
z plane, l11511z21p1••• , etc. Hence, in theu plane
@with the usual1 sign taken forAu if arg(u)50#, l11 is
again dominant on the positive realu axis in the vicinity of
the origin.

Together with the theorem that a 1D spin model w
finite-range interactions has no nonanalyticity forT.0, i.e.,
along the positiveu axis, it follows that for positive integra
p, l11 is the dominant eigenvalue on the entire positiveu
axis and hence the CT phase in theu plane that includes this
axis and to which one can thus analytically continue fro
this axis.

We next prove a general theorem: Forr51/p with p a
positive integer, there arep12 phase boundary curves em
nating from the origin in the complexu plane, at the angles

un5
~2n11!p

21p
for n50,...,p11. ~33!

Proof. To encompass the cases of both even and oddp,
we use the Taylor-series expansions in thez plane. From
these it follows that in the vicinity ofz50, l11 and l21

alternate as the dominant eigenvalues. Now define polar
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5188 55ROBERT SHROCK AND SHAN-HO TSAI
ordinates according toz5rze
iuz, whence u5reiu with

r5rz
2 and u52uz ; then the degeneracy condition of lea

ing eigenvalues ul11u5ul21u reads u11z21p1•••u
5u12z21p1•••u ~where the ellipses denote higher-ord
terms!, the solution to which is cos@(21p)uz#50, i.e., uz
5(2n11)(p/2)/(21p) for n50,...,p11. This proves
Eq. ~33!.

A related theorem is the following: For positive, oddp,
the complex-temperature phase boundaryB always contains
the negative realu axis. To prove this, we again use th
result that in the vicinity ofz50, l11 andl21 alternate as
the dominant eigenvalues. We next observe that in thu
plane, the degeneracy condition of leading eigenval
ul11u5ul21u is automatically satisfied on the negative re
u axis as a consequence of the symmetry condition~27! and
relation ~28!. This completes the proof.

Two further general theorems are the following: For po
tive r51/p with integer p, as one makes a half circu
around the origin in theu plane, the dominant eigenvalue
alternate betweenl11 and l21 . This is proved by noting
first that from the Taylor-series expansions above, these
eigenvalues are the dominant ones in the vicinity of the
gin and second, it is precisely their alternation as domin
eigenvalues that produces the phase boundaries eman
from the origin at the angles~33! and separating the differen
phases. Since the dominant eigenvalue at2u is the same as
that atu, this theorem also completely determines the do
nant eigenvalues on the rest of the full circle around
origin.

By solving the degeneracy conditions of dominant eig
values, we have mapped out the complex-temperature p
diagrams. We consider odd values ofp first and then even
values. In Figs. 1–3 we show the results forr51, 1

3, and
1
5.

For r51, we find that the complex-temperature phase d
gram consists of three phases:a, a region including the posi
tive realu axis and extending outward to the circle at infi
ity, together with two complex-conjugate~c.c.! phasesb and
b* , located above and below the negative realu axis from
the origin leftward tou521. As follows from our genera
discussion above,l11 is the dominant eigenvalue in regio
a and, sincel11 andl21 alternate as dominant eigenvalu

FIG. 1. Phase diagram of the 1D NNN Ising model in the co
plex u plane forJNNN /JNN5r51.
s
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in the vicinity of u50, l21 is dominant in regionsb and
b* . On the curve separating regiona from regionsb and
b* , ul11u5ul21u. The CT phase boundaryB includes mul-
tiple points atu50, where three curves meet, and a multip
point atu521, where four curves meet, with two differen
tangents, hence index 2. Here we use the terms ‘‘mult
point’’ and ‘‘index’’ in their technical algebraic geometr
sense~see our previous discussions in Ref.@6#!. Thus, while
in the model with only the NN spin-spin coupling, the C
phase boundaryB is the negative real axis, the effect o
adding a NNN spin-spin coupling withr51 is to produce
two new complex-conjugate phases bounded by curves s
ing out from the origin and meeting atu521. As must be
true from general arguments, the theory is still analytic
the positive realu axis; the only changes are an increase
the number of CT phases elsewhere.

The complex-temperature phase diagram forr5 1
3 Fig. 2

is progressively more complicated, consisting of five phas
a, a region containing the positive realu axis; b and b* ,
complex-conjugate phases whose borders are shaped s
what like half circles, adjacent to the negativeu axis and
including the interval21,u,0; andc andc* , c.c. phases

- FIG. 2. Same as in Fig. 1, but forr5
1
3.

FIG. 3. Same as in Fig. 1, but forr5
1
5.
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55 5189COMPLEX-TEMPERATURE PHASE DIAGRAMS OF ONE- . . .
lying roughly concentrically outward fromb and b* and
including the interval of the negative realu axis 22.4&u
,21. From our general discussion above, it follows that,
addition to regiona, l11 is dominant in regionsb andb* ,
while l21 is dominant in regionsc andc* . The CT phase
boundaryB contains multiple points atu50, where five
curves come together, atu521 and u.22.4, where in
each case four curves come together with two different t
gents, hence the index 2.

Finally, we show the complex-temperature phase diag
for r5 1

5 in Fig. 3. The general features of this phase diagr
follow from our previous discussion. A different aspect
that in addition to the part ofB running along the negative
real u axis, B also contains two complex-conjugate curv
that extend to infinite distance from the origin in the ‘‘nort
east’’ and ‘‘southeast’’ quadrants.

We next show in Fig. 4 a typical CT phase diagram in th
u plane for an even value,p52, i.e.,r5 1

2. In contrast to the
diagrams with oddp, in those with evenp, B does not
contain the negative real axis. Forp52, the CT phase dia
gram consists of four phases:a, a region containing the posi
tive realu axis and extending outwards to infinity;b, a re-
gion including the interval 21,u,0; and complex
conjugate regionsc andc* above and below regionb. Our
general discussion above determines the dominant eigen
ues in the various regions:l11 in a and b and l21 in
regionsc andc* . The CT phase boundaryB involves mul-
tiple points atu50 and21, each of index 2. The phas
boundaries for evenp may run to infinite distance from th
origin. For example, we have also calculated the phase
gram forp54 case and find in this case that part ofB con-
sists of curves running tou56 i`.

V. CASE OF POSITIVE INTEGER r

We have also studied the situation where the NNN c
pling is ferromagnetic and stronger than the NN couplin
i.e., r>1; here we focus on the case of positive integerr .
For this case, the partition function is a generalized poly
mial in uK . By reexpressing the eigenvaluesl16 andl26 as
functions ofuK , i.e.,

FIG. 4. Same as in Fig. 1, but forr5
1
2.
-

m

al-

a-

-
,

-

l165 1
2 @11uK

1/26A~12uK
1/2!214uK

1/21r #, ~34!

l265 1
2 @12uK

1/26A~11uK
1/2!224uK

1/21r #, ~35!

one sees that

ul11~uK!u5ul21~uK!u,
ul12~uK!u5ul22~uK!u for real uK,0. ~36!

This implies that the CT phase boundaryB contains the
negative realuK . The expansions of these four eigenvalu
around the origin of theuK plane follow directly from the
expansions given in Eqs.~29!–~32! with the replacementu
5uK

r . Hence it is again true that as one traverses a h
circuit of the origin in theuK plane, the dominant eigenvalu
along the positive realuK axis is l11 and the dominant
eigenvalues alternate betweenl11 and l21 . This also de-
termines the dominant eigenvalues on the complex-conju
half circuit. These two results together imply that for arb
trary positive integralp, the CT phase boundaryB always
includes the negative realuK axis. Reexpressing the Taylor
series expansions of the eigenvalues in terms ofzK , the de-
generacy condition for the leading eigenvaluesul11u
5ul21u readsu11zK

112r1•••u5u12zK
112r1•••u, where the

ellipses denote higher-order terms. DenotinguK5rKe
iuK,

the solution to this condition is

uK5
~2n11!p

112r
for n50,...,2r . ~37!

This proves that in the complex-temperature phase diag
in theuK plane,B contains 112r curves emanating from the
origin at the angles given in Eq.~37!.

In Fig. 5 we show the complex-temperature phase d
gram for a typical caser52. The dominant eigenvalues i
the phases that are contiguous to the originuK50 are com-
pletely determined by our previous general results; star
from the phase containing the positive realuK axis and mov-
ing in the direction of increasing arg(uK), these alternate ac
cording tol11 , l21 , and l11 . For the remaining phase

FIG. 5. Complex-temperature phase diagram in theuK plane for
r52.
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that is not contiguous to the origin, depending on on
choices of branch cuts connecting the branch points of
square roots in the eigenvalues, eitherl21 or l22 is domi-
nant.

VI. NEGATIVE r IN THE INTERVAL 2 1
2<r<0

For the range2 1
2,r,0, notwithstanding the competitio

and frustration that the NNN interaction produces, it is s
an irrelevant perturbation. As before, if 1/r52p with posi-
tive integral p, then Z is a generalized polynomial in th
variable u5e24K8 and hence also in its inversew51/u.
SinceK8,0, we shall use this inverse variablew for our
analysis in order to maintain the correspondence of zero t
perature with the origin of the plots. The eigenvalues of
transfer matrixT̄ in this variable can be obtained from Eq
~25! and ~26!:

l165 1
2 @11wp/26A~12wp/2!214wp/221#, ~38!

l265 1
2 @12wp/26A~11wp/2!224wp/221#. ~39!

The borderline valuep52, i.e.,r52 1
2 at which the nature of

the ground state changes, as discussed above, is evide
these eigenvalues since asp increases abovep52, i.e., r
decreases belowr52 1

2, the eigenvalues cease to be finite
the origin w50 because the last term in the square r
becomes a negative power. By the same reasoning as be
if and only if p is an odd integer,B contains the negative rea
w axis. For integerp.2, so thatr.2 1

2, which includes the
region of interest here, these eigenvalues have the serie
pansions aroundw50:

l11511wp/2211••• , ~40!

l21512wp/2211••• , ~41!

l1252wp/2211••• , ~42!

l115wp/2211••• , ~43!

where the ellipses denote higher-order terms. From thi
follows that for our case of integerp.2, l11 is the domi-
nant eigenvalue on the positive realw axis and in the CT
phase that includes this axis. Other results are simila
those derived for positiver51/p above: on the negative rea
w axis in the vicinity of the origin, ifp is even, then~i! if
p50 mod 4, thenl21 is the dominant eigenvalue, where
~ii ! if p52 mod 4, thenl11 is dominant, and these respe
tive eigenvalues are also dominant in the CT phase tha
cludes this portion of the negative realw axis.

In Figs. 6 and 7 we show our calculation of the compl
temperature phase diagram in thew plane for the valuesr
52 1

4 and 21
3, respectively. Forr52 1

4, besidesa, the
wedge-shaped phase including the positive realw axis,
wherel11 is dominant, there is a phaseb that includes the
interval21,w,0 of thew axis, in whichl21 dominates,
and c, a phase including the segment2`,w,21 where
l22 is dominant. In addition, there are two comple
conjugate phasesd and d* , wherel12 is dominant; these
have boundaries that cross each other at a multiple poin
index 2 atw521. For r52 1

3, besides the phase containin
s
e

l

-
e

t in

t
t
re,

ex-

it

to

n-

of

the positive realw axis, there are two pairs of complex
conjugate phases. As one moves from northeast to northw
the eigenvalues that are dominant in these regions arel21

andl12 .
For the present range2 1

2,r,0, there is a finite physica
disorder temperatureTD determined by the equation@17,18#

cosh~K !5e22K8. ~44!

The disorder temperatureTD decreases monotonically from
TD5` at r50 to TD50 asr decreases to2 1

2. In the con-
text of the complex-temperature generalization of this mod
we observe that, in addition to the physical solution of E
~44! for TD , there are also complex-temperature solutions
terms of the ratior and the couplingK5KR1 iK I , the real
and imaginary parts of Eq.~44! yield the respective equa
tions

cosh~KR!cos~KI !5e22rKRcos~2rK I !, ~45!

FIG. 6. Complex-temperature phase diagram in thew plane for
r52

1
4.

FIG. 7. Complex-temperature phase diagram in thew plane for
r52

1
3.
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sinh~KR!sin~KI !52e22rKRsin~2rK I !. ~46!

A more compact way of writing Eq.~44! is in terms of the
Boltzman variablezK ,

11zK52zK
r11/2. ~47!

Let us defineKD5JNN /kBTD and zK5e22KD. As an illus-
tration, for r52 1

4, Eq. ~47!, expressed in terms of the var
able v5w1/2, where w5e4K8 @whence,w(r52 1

4)5zK
1/2

5e2K# is (v21)(v31v21v21)50. @The trivial solution
v51 corresponds toK5K850 in Eq. ~44! and is not of
interest here.# The cubic factor has as roots the physical d
order solutionvD50.5437, i.e.,wD50.2956 (KD51.219)
and, in addition, the complex-temperature rootsv5
20.771861.115i , i.e., w520.647861.721i (K5
20.609461.931i ). As noted in Ref.@12#, there are an infi-
nite number of complexK values corresponding to a give
value of a Boltzmann weight variable, depending on on
choice of Riemann sheet in the evaluation of the logarith
here we list only one value ofK for eachw. These complex-
temperature solutions of Eq.~44! lie in phasesd andd* in
Fig. 6. From a similar analysis forr52 1

3, wherew(r52
1
3)5e24K/3, we find, besides the physical disorder pointwD
50.066 94 (KD52.028), also the two pairs of complex
temperature solutionsw521.60761.539i (K520.5998
61.783i ) and w51.07361.366i (K520.414260.6787i ).
One can see from Fig. 7 that these complex-temperature
lutions of Eq.~44! lie in the interiors of four CT phases.

VII. NEGATIVE r IN THE INTERVAL 2`<r<2 1
2

As discussed above, forr<2 1
2, the NNN spin-spin cou-

pling is so strong as to change the nature of the ground s
from FM to the~2,2! form. In Fig. 8 we show the complex
temperature phase diagram for a typical caser521. Note
that, in particular, by the same reasoning as for positive
tegerr @cf. Eq. ~36!#, it follows thatB always includes the
negative realuK axis.

FIG. 8. Complex-temperature phase diagram in theuK plane for
r521.
-

s
;

o-

te

-

VIII. CASE r52 1
2

For the borderline valuer52 1
2, i.e., JNNN52 1

2JNN,0,
the competing preferences toward a ferromagnetic and~2,2!
ground state are exactly balanced. Indeed, forr52 1

2, the
model has nonzero ground state entropyS(T50) 5kBln$12
(11A5)% @17,20# and exponential asymptotic decay
^s0sn& ~modulated by an oscillatory factor! even atT50
@17,18#. We find that if and only if r52 1

2, then the
complex-temperature phase boundaryB does not pass
through the pointT50 or, equivalently, the origin in thew
51/u5e4K8 plane. This avoidance of the pointw50 by B
shows the absence of criticality atT50. In Fig. 9 we present
our calculation of the complex-temperature phase diag
for r52 1

2. One sees thatB consists of two complex-
conjugate curves that only intersect the realw axis at the
point w521 ~where they exhibit a multiple point of inde
2!.

IX. POTTS MODEL

Since the spin-12 Ising model is equivalent to the two-sta
Potts model, it is natural to extend the present study to
clude some remarks on how the complex-temperature ph
diagram of the 1D Potts model changes under the additio
a NNN coupling that is an irrelevant operator. Recall that
contrast to the 2D NN~spin-12! Ising model, no exact solution
is known for general temperature of the 2D NNq-state Potts
model forq.2 and hence the CT boundaryB is not known
even for this NN case~see, e.g., Refs.@12,13# and references
therein!.

The zero-field 1Dq-state Potts model with NN and NNN
interactions is defined by the partition functionZP
5(sn

e2bHP with

HP52JNN (
n

dsnsn11
2JNNN (

n
dsnsn12

, ~48!

whered i j is the Kronecker delta andsnP$1,...,q%. For our
study, we shall consider ferromagnetic couplin
JNN ,JNNN.0 and defineK,K8,r , as in Eqs.~3!, ~4!, and~1!

FIG. 9. Complex-temperature phase diagram in thew plane for
r52

1
2.
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anduP5e2K. The 1D NN model withJNN,0 involves fi-
nite ground-state disorder, with ground-state entropyS0
5kBln(q21). This is similar to the situation on sever
higher-dimensional lattices; see Ref.@26# for the square lat-
tice and Ref.@27# for the honeycomb lattice.

A notable feature of the CT phase diagram for the 1D N
Potts model is its simplicity; in Ref.@9# we found that for
q>3, it consists only of two phases, separated by the bou
ary B comprised of a circle

uP5
211eiv

q22
, 0<v,2p. ~49!

The solution of the 1D NNN Potts model proceeds in t
standard manner, via transfer matrix methods. As before,
most efficient to use spin configuration vectorsvn
5usn ,sn11&, so that

^vnuTPuvn11&5^vnue2bHPuvn11&

5expSK2 ~dsnsn11
1dsn11sn12

!1K8dsnsn12D .
~50!

Thus the transfer matrixTP is a q23q2 matrix. Here we
consider the simplest caseq53. The resultantTP is straight-
forwardly calculated from Eq. ~50!. Defining T̄P
5e2(K1K81h)TP , we find, for the characteristic polynomia
of T̄P ,

P~ T̄P ;l!5@l1uP~12uP!#@l22~uP
21uP11!l

1uP~12uP!~112uP!#@l31~uP
221!l2

1uP
2 ~uP21!~uP12!l

1uP
2 ~12uP!2~2uP11!#2. ~51!

The resultant eigenvalues ofT̄P are

l05uP~uP21!, ~52!

l165 1
2 @11uP1uP

26A122uP2uP
2110uP

31uP
4 #,

~53!

together with three roots of the cubic factor in Eq.~51!, each
of which is a double root ofP(T̄P ;l). We denote these a
l3a , l3b , andl3c and, since the expressions for these cu
roots are rather complicated, we omit listing them he
Aside from the polynomiall0 , the other eigenvalues hav
the following Taylor-series expansions arounduP50:

l115112uP
31O~uP

4 !, ~54!

l125uP1uP
21O~uP

3 !, ~55!

l3a512uP
31O~uP

4 !, ~56!

l3b52uP2
1

2
uP
21O~uP

3 !, ~57!
d-

is

c
.

l3c5uP2
1

2
uP
21O~uP

3 !. ~58!

In the absence of any NNN coupling, Eq.~49! shows that
B would be a circle of radius 1 centered atuP521. In Fig.
10 we show the complex-temperature phase diagram for
51. We find that the presence of the NNN interaction ha
strong effect on this diagram. The CT phase boundary
much more complicated than just the unit circle centered
uP521. Rather than just two regions, as in the model w
only NN spin-spin interactions, the complex-temperatu
phase diagram consists of nine phases. Three of these
a, the region containing the positive realuP axis, where
l11 is dominant;b, the region including the interval21
,uP,0, in whichl3a is dominant; andc, the region includ-
ing the rest of the negative real axis,2`,uP,21, where
l0 is dominant. The remaining six are comprised of thr
complex-conjugate pairs. Starting from the northeast qu
rant and moving to the northwest quadrant, the member
these pairs with Im(uP).0 are d, a region with a wedge
contiguous to the origin, wherel3a is dominant;e, a second
region contiguous to the origin, wherel11 is dominant; and
f , at the same angle.2p/3 but farther out from the origin,
a region where, depending on how the cuts linking t
branch points of the cube roots are chosen,l3b or l3c is
dominant; the others are then the complex conjugates
these. The complex-temperature boundaryB contains a mul-
tiple point atuP50, where six curves come together wi
three separate tangents~hence index 3!, and two complex
conjugate multiple points at (uP)m5e2p i /3 and (uP)m* ,
where six curves meet in a tacnode, with three different t
gents~see Ref.@6# for a discussion of tacnodes on CT boun
aries B!. We note that the complex conjugate bounda
curves separating phasesa and f , and a and f * , respec-
tively, eventually head outward in northeast and southe
directions at larger distanceuuPu from the origin.

X. CONCLUSION

In this work we have continued our exploration of th
dependence of complex-temperature phase diagrams on

FIG. 10. Complex-temperature phase diagram of the 1Dq53
Potts model in theuP plane forr51.
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tails of the Hamiltonian, focusing on the effect of a nex
nearest-neighbor spin-spin coupling in a simple exactly so
able model, the 1D Ising model with nearest- and ne
nearest-neighbor spin-spin couplings. Even for the rang
values ofr5JNNN /JNN , where the NNN coupling is an ir
relevant perturbation to the Hamiltonian at theT50 critical
point, we have shown that it has a considerable effect on
complex-temperature phase diagram. We have also prese
some corresponding findings for the 1Dq53 Potts model.
Our results further emphasize that, while complex-tempe
a

.

-
t-
of

e
ted

a-

ture phase diagrams and singularities give a deeper ins
into the behavior of statistical-mechanical models, they
pend on details of the Hamiltonian, in contrast to the us
universality observed at physical critical points.
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